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ABSTRACT

In this work, the control laws of a bank-to-turn mis-
sile using and optimal estimator in the terminal guidance
phase were designed, and the effect of increasing the number
of measurement sensors in the missile to generate more
information on the state was investigated. In the design of
the control law the modern optimal control theory with the a
quadratic performance index was used. Implementation of
this control law required the use of a Kalman filter as the
optimal estimator. The extended Kalman filter algorithm was
utilized in the present study since the measurement states
were non-linear functions of the state vectors. In order to
test the effects of the implementation of the increased mea-
surement sensors, two-, four-, and six-measurement sensors
were assumed to be implemented in the optimal estimator. By
computer analysis, the designed guidance laws were evaluated
and the effect of the implementation of increased measurement
sensors was tested.

The results of the simulation revealed that the designed
guidance law was successful within the specified scenarios,
the effect of the implementation of increased measurement
sensors for the estimator was favorable only in that
increased measurement sensors generated more information

about the state vectors,
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I. INTRODUCTION

The bank-to-turn missile has high lift acceleration in
a direction perpendicular to its wings. For airbreathing
missiles which are required for large stand-off ranges it
also offers the advantage of lower inlet angles of attack
than thét of skid-to-turn missiles.

Although the control laws using the modern guidance
control theory are more complex than the normally used
proportional navigation air-to-ground method, they have
great potential for maneuvering targets in air-to-air
engagement situations. The application of optimal control
and estimation theory to bank-to-turn missile configurations
has been tried in order to obtain increased performance. In
the application of the optimal control theory to the bank-
to-turn missile, it is necessary to have information on all
states or an estimate of the state variables that have not
been measured. Since the state information available from
the typical missile sensors is limited, it is necessary to
employ an estimator. The estimator used in this study was
a first order extended Kalman filter.

The present work addressed the design and evaluation of
the optimal state estimator and optimal control laws for
application to a bank-to-turn missile. In the development

of this work, Chapter 2 will describe the kinematics of the

13
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TE missile and formulate the equations of the motion. All
major assumptions are listed. The optimal controller is
described in Chapter 3. The simulation results of the
controller on three scenarios described later are used to

check the suitability of the optimal controller. The

optimal estimator is covered in Chapter 4, the formulation
of the state equation, measurement equations and the S
derivations of the elements of Jacobean matrix are covered. "
The extended Kalman filter algorithm for non-linear system B

is then reviewed. Before the final computer simulation a :;ﬁ

discussion is given on the nominal parameters needed in

initializing the Kalman filter. The results of the simula-

tion of estimators with two-; feur-, and six-measurement

vectors on a typical scenario are then presented. 1In ot

Chapter 5, the simulation results of the control laws imple-

mented the estimator with two-, four- and six-measurement

sensors on three scenarios is described. The detail analy-

sis of the results is developed in order to investigate the
effect of thé key variables of the control system on a bank-
to-turn missile. The mean miss distance determined from 50 L;;
Monti Carlo runs as a performance standard was used in the ’
analysis of the results of the control laws as a function of
the key variables. Finally, the conclusion are summarized l_;

in the last Chapter.
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IT. KINEMATICS OF A BANK-TO-TURN MISSILE

A. ASSUMPTIONS

The geometry and the equations of motion of the missile

will be developed, representing the positions in space,

under the following assumptions:

1.

The local geographic coordinate system will be used
as the inertial reference.

To simplify the equation of motion the stability
axes are adopted for the missile body.

The missile velocity due to thrust is constant.
There is no missile acceleration in velocity due to
thrust.

Each control surface or surfaces is rigid.

Relative to the body axes, each control system has
only one degree of freedom. The missile's control
acceleration vector acts normal to the velocity
vector, that is, the dot product of acceleration
vector and velocity vector is zero, also the
acceleration acts through the missile center of
gravity.

8 and ¢ will be used to

The Euler angles ¢v » 6,

describe the orientation of the missile with
respect to inertial space, where ¢, and e, are
horizontal and vertical flight path angles, and ¢

is the roll or bank angle.
15
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7. The first order lags with time constants T and

-

To to a roll rate command PC and a normal
acceleration command a. will be considered for

the dynamic response of the missile.

B. MISSILE CONTROL METHOD

Before going into the mathematical detail concerning
the motion of a missile in space as a result of a guidance
command, it is helpful to review with the control law for a
bank-to-turn missile. The guidance system detects whether
the missile is flying too much or too high to the left,
right or vertical. The guidance system measures these
deviations or errors and sends signals to the control svstenm
to reduce these errors to aero. The task of the control
system therefore is to maneuver the missile quickly and
efficiently as a result of these signals. In a bank-to-turn
missile system, the guidance angular error detector produces
two signals R and ¢ in terms of polar coordinate expres-
sion, showed in Figure 2.1. The same signals can be
expressed in another way, that is, in cartesian coordinate.
The usual method is to regard the ¢ signal as a command
to roll through an angle o measured from the vertical
and then to maneuver outwards by means of the missile's
elevators. The method of maneuvering the missile is as
follows. The ¢ command goes as a positive command to one

control surface and a negative command to the other, this

16




__ MISSILE

—— TARGET

FIGURE 2.1. MISSILE CONTROL SYSTEM IN POLAR CO-ORD.

causes the missile to roll. The R command goes to
surfaces always as a positive demand, this causes the
missile to accelerate normal to the velocity vector. The
intention is to make the response in roll fast so that the
commands can be applied simultaneously which makes for
simplicity, only a pair of control surfaces are used as
ailerons and elevators at the same time, control is obtained

by means of the separated servos.

C. GEOMETRY OF MOTION IN SPACE

The motion of a missile as a particle may be described
by using coordinate measured with moving axes (relative-
motion analysis). The analysis of motion can be simplified
by using measurements made with respect to a moving coordi-

nate system. In present work, the equations of motion will

17




MISSILE NORMAL
b FORCE AXIS

— 1
/  MISSILE
i LONGITUDINAL
AXIS

J MISSILE WING AXIS

FIGURE 2.2 GEOMETRY OF RELATIVE MOTION.
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be described with respect to the initial missile body axes '
taken as the inertial axes. After launching, the missile
body axes changes position, but the relative position,

- velocity and acceleration are still computed in inertial

axes, that is, in the initial body axes. The current zero
effort miss distance is calculated. This will then be
transformed to values in missile body axes to compute the
amount of the control inputs to the missile using Euler's

transformation.

Figure 2.2 shows the missile and target as points with

TV,

respective vector velocity Vi and V, - In this analysis,
because [V | 1is assumed to be at least 2|V.| , and the
angle of attack is assumed to be small, the lead angle ¢
between VR and the missile longitudinal axis is small.

Let the vector denote the relative position of the target
with respect to the missile. The orientation of the sight
line vector in inertial space can be represented by the
angle yp and bp » as shown in Figure 2.2. The sight
line vector is resolved into three components in inertial

axes as follows;

Rx = R*cos(eR)*ccs(:pRI = Xt - Xm (2.1)
Ry = R*cos(eR)*sin(wR) = Yt - Ym (2.2)
= 7t - Zm (2.3)

Rz = - R*sin (¢R)

Where R is the magnitude of the sight line vector.

19
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Define the relative velocity vector:

Where Vt and Vh are target and missile velocities.

The rate of change of the sight line vector's magnitude

is equal to the component of V aleng R . It can be
P R

expressed as following:
R = —L 2 (2.5)

r E v *
ﬁ _ er Rx * Vry*Rv * \rz Rz (2.6)
h 2z 2 2 :
(Rx + Ry *+ R, )

Where er = Vtx - th

Vey = Vey * Vay

Viz = Ver - V2

are the relative velocity components in the inertial frame.
In the geometry, the relative angles YR and 6p also
will be expressed by the relative vectors:
R

-] -
8, = - tan = (2.6)
R 2 2,172
(R + R

20




v = -taﬁl EX (2.7)
r RZ e

Where EhY and Yg are the elevation and the azimuth angles
of the relative sight line vector in the inertial frame.

Then the rate of change of both angles are

¢ Ve
R R
- sinevcosxpvvrx - sinevsinwvvrv + coseVVrz
- 7 i T 1/7 (2.8)
(Rx + Ry + R, )
- pr . -sin:,bvvrx + COSwVYIX
Vg = pipey. 2 2 (2-9)

_ " 7
Rcosyv_ (RX + Ry . RZ')cosev

are the rates of change in § and

Where V 6 and V v

R Ry
¥, components, is shown in Figure 2.3. These quantities
will be used later in developing the estimator state
equations and will also be used to represent the variables
for the missile seeker. The quantities BR , éR s wR , ¢R ,

R and R (corrupted by noise) are the set of measurements

assumed available from the missile seeker.

D. KINEMATICS OF CONTROL VECTOR
Figures 2.4 and 2.5 are views from near and side of

missile. g and ¢ represent the magnitudes of the

21
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FIGURE 2.3 RELATIVE VELOCITY COMPONENTS IN POLAR CO-ORD.




- DEROLLED
L -Z-AXIS

MISSILE NORMAL
/ FORCE AXIS

(9]
o]

a cos¢,

;*\\ .2 DEROLLED Y-AXIS
<J ?

o
/
/

gcosev

FIGURE 2.4 KINEMATICS OF CONTROL VECTORS VIEWED
FROM REAR OF MISSILE.

- z-AXIS

a_cos
mc ¢

. S S D . S — — — - —— — f— ———

HORIZONTAL

——— o —— — — — — — — — —— — — — ——

FIGURE 2.5 KINEMATICS OF CONTROL VECTORS VIEWED
FROM SIDE OF MISSILE.
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missile acceleration due to the acceleration command (ac)

and the bank angle due to the roll rate command (Pc) each
other. g represents the gravitational effect at the center
of gravity of the missile. As mentioned in control method,
the sign of a 1is such that it is positive upward with
respect to the wings. Figure 2.5 shows that the accelera-
tion normal to the velocity vector has the components due

to the elevator control input and the effect of the gravity.

The total magnitude of the acceleration normal to the

velocity vector can be represented as

* LB
o] - .
ap”c s¢ g 51n6V

The velocity and acceleration components for simple
circular motion can be represented as

- v
a, = V:/p

See Reference 1.
Using this definition, the differential equations

describing the rate of change of the flight path angles are

. a_cosy - gcose
= M v
8, = v (2.10)

24




a, sin¢
v T Y cost (2.11)
m v

Note am*cos¢ - g*cosev is the magnitude of the normal
acceleration component to the velocity vector in missile
side plane and am*sin¢ is the magnitude of the normal
acceleration component to the velocity vector in the x-y
plane. The acceleration component of the missile velocity
Vin has only the component of the effect of gravity in the
missile side plane under the assumption that the missile

velocity is constant. The differential equation is:

= -~o%*gi
Vh g 51n6\'r (2.12)

The rates of change of the missile position components
(Xm, Ym, Zm) can be obtained by integrating the components
of missile velocity. From Figure 2.2, the components of

missile velocity (Vmx, Vmy, Vmz) in inertial frame are

given by
km = th = Vm*cosev*coswv (2.13)
Y, = Vpy = Vptcose *siny, (2.14)
I =V, = - V*sing (2.15)

Let the response of the missile to input command in
normal acceleration and roll rate be considered. If a

demand is made on a missile for a transverse acceleration,

25




it is initiated by sending a signal to the appropriate con-

"trol surface. The missile acceleration ay follows the
demanded acceleration ay in a manner which may be
characterized by a frequency “o (weather cock frequency)
and a damping factor P . For simplicity, in present

work, only the first order lags with time constant Tp and

T, are assumed, the equation of the first-order system can

be represented as follows:
X(t) + 1./1%X(t)) = £(t)

Taking the Laplace transformation on has
X(S) = F(S)/(S+1./T)

with zero initial condition. Applying these to the BTT

missile control system.

T *é +a = a (2.16)
* =
TP+ P o P (2.17)

Rearranging the differential equation.

ém = (aC - am)/ra (2.18)
P = (P - Pm)/Tp (2.19)
6 = P (2.20)

26
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Where a. and PC are the acceleration and roll rate

commands. Equation (2.20) is by definition. TFrom the
above differential equations the control ratios are

transformed as follows:

am(S) 1
ac(S) = TaS + 1 (2.21)
P(S) 1
PL(S) T T E I (2.22)

Equations (2.10) through (2.22) constitutes the dvnamic
equations describing missile motion in response to the
command inputs ac and Pc . The solution of these
equations provide missile position (Xm , Ym , Im) ,

orientation and magnitude of velocity (wv , 8. , \Vm) and

v
orientation and magnitude of control acceleration (¢ , am)

E. CO-ORDINATE TRANSFORMATION

Given that the missile is on guided flight to compute
the magnitudes of the control inputs at any moment, it is
necessary to transform the instantaneous values from the
sensors in the inertial frame to the instantaneous values in
body frame. The transformation from one frame to another
can be accomplished through a transformation matrix. The
transformation matrix wiill be developed.

Define an inertial coordinate system with unit vectors

I, J, K. Also,define a missile body axis coordinate system

27
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with unit vectors i, j, k., It is desired to find the trans-

formation between the I, J, K system and the i, j, k systen.
The I, J, K system can be thought to be oriented so

that I points north, J east, and K down. Similarly, the

1, j, k system has i along the longitudinal axis of the

missile (which by assumption is along the velocity vector

vm), j out the right wing, and k down.

v’ ev and

Consider three successive rotations 1y
The v, rotation is about the inertial z axis, and
transforms to an intermediate axis systems il, jl’ kl‘
The oy rotation is about the jl axis and transforms to an
axis system iz, jz, kZ' The last rotation ¢ about the
i, axis transforms from flight path axes to missile body
axes. As a result, the total transformation from inertial

to body axes is given by

i I I
il = lelle,dlv,] [} =IA) | J (2.23)
k K K

Where A is the total transformation matrix from inertial to
body frame. The elements of the a matrix from Reference 1
are:
= : ®
all co>(ev) cos(wv)
= g
al2 cos(ev) 51n(wv)

alld = -51n(6v)
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a3l = cos{;)*sin(ev)*cos(uv) + sin(3)*sin(y.) :

a32 = cos(t)*sin(9 )’>1n\,\) - sin(:)*cos(ﬁv)
- a33 = cos(y)*cos(5,)
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IT1. AN OPTIMAL CONTROLLER

Although this work is primarily concerned with the
effect of an optimal estimator on the performance of a bank-
to-turn missile, we will first outline the theory of an
optimal controller in this section. The guidance laws
considered here were first developed by Stallard [Ref. 10].

The following is a brief outline of his work.

A. GEOMETRY
Figure 3.1 shows the applicable geometry representing
the Projected-Zero-Control miss (PZC miss) distance in the
terminal state. The problem is considered to be three-
dimensional and two major axes system are used:
1. A seeker-oriented axis system for estimation or
measurement, and
2. The three principal axes of the missile for the
control problen,
Xb, Yb, Zb denote the target coordinates relative to the
missile along its principal axes. The body system is repre-

sented a time T = 0 by a set of Eulian angles which

relate it to an earth fixed system. The angle &% is the
incremental roll angle from the present missile axes to any
future orientation at time T , shown dashed in Figure 3.1. -41

The PZC miss represents the total Projected-Zero effort -

miss distance and is defined as the miss distance which
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would occur if no further control was exercised on the

missile at T = Ti It is composed of a Y-components

(PZCY miss) and a Z-component (PZICZ miss). Under the
assumption of constant velocity the X-component (PZCX miss)
is represented by the distance that the missile has to fly

at any time, since it is not effected by control, it is

not shown in Figure 3.1.

[ ]

:b at time t

PZICZ
Yb at time t
aCA©
‘\
\\\\\
Acz\~\

FIGURE 3.1 COMPONENTS OF PIC, MISS DISTANCE.
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B. SUMMARIZED DESCRIPTION OF AN OPTIMAL CONTROLLER

Given a time-varying linear system of the form,
X = F(t)X + G(t)U (3.1)

Where X 1is n-component state vector
U 1is m-component control vector.
An optimal control is one that minimizes a performance
index made up of a quadratic form in the terminal state
plus an integral form of quadratic forms in the control and
the state:

T

J =3 (X's.X 1

Ty T T
SeX o) * 7 (xTax + uTBU)dt (3.2)

To

Where the S¢ and A are positive semidefinite matrix and
B is a positive definite matrix. An appropriate choice of
these matrices must be made to obtain acceptable level of
X(Ti) , (X(t) and U(t)

The guidance law determined in Reference 8 is of the

form:

With the performance index chosen (the weighting on the

state vector was not considered in Reference 8.
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Where the first term is one-half the required miss distance,
the second term is included in order to eliminate infinite
energy solutions. B is a 2 by 2 positive definite,

symmetric weighting matrix and of the form

B1 0
B = (3.4)
0 B2
with 1/B.. = (Ti - To)X maximum acceptable value of

1)
]Ui(T)I2 . A detailed derivative of the optimal guidance

law is given in Reference 10.
The solutions of the above equation from Reference 8
give the optimal acceleration command at time T between

TO and Ti as
3T
a_ = ——fi‘-’-——g (- M) (3.5)
3B1 + Tgo

Where Tgo is the remaining time to go until intercept and

M is the PZC-miss along the missile normal force axis and

bz
the negative sign is due to definition of the normal
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acceleration as positive in the upward direction. The
optimal roll rate command at time T between TO and Ti
from Reference 8 is given by
21a_ T 2 M
P, = ;C go (by) (3.6)
a. Tgo + 63 B2

Where Mby is the PAC-miss along the wing axis. Defining

the roll error:

An alternate form for P_. can be obtained by dividing

Equation (3.6) by Equation (3.5), then

tan{Aa9¢) (3.8)

Because the solution of P. was based on an assumption of
small missile roll excusions, the tand¢ term in

Equation (3.8) can be replaced by A¢ to yield

2 3

7a “T T + 3 B,)
p = S 80 80 L a0 (3.9)
c a ‘T >+ 638
c go 2
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The optimal controller is implemented in the present work
using Equations (3.5),'(3.7), and (3.9). In computing the
control input, Tgo , Y and Z-component of PZC-miss and
the elements of the weighting matrix are needed.
C. APPROXIMATING TIME-TO-GO

It is necessary for the Time-To-Go and the Projected-
Miss-Distance in missile body axes to be specified at time
T to compute the optimum control input. The Time-To-Go

will be defined at first, then the state variables will be

introduced as means for formulating the necessary equations.

The target acceleration components of the state variables
will be modeled since it is assumed that any informaticn
about the target acceleration cannot be obtained from the
active seeker of the missile. Then using this target
acceleration model the algorithm for computing the other
state variables will be developed.

The Time-To-Go until intercept, Ti , 1s required for
computing the control input. Let the time to intercept be
defined as the time to minimum range. Under the assumption
that the relative velocity vectors may be considered
constant at its present value until intercept. T can be

found at time, T , as:

R T vV
T, = - 1L -r -r (3.10)
T |_r(
35
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Where R 1is the present position of the target relative to

the missile and the factor in brackets in the component of

V along R . An alternate form of T is:
T. = ) 'varx Ryvry RerZI
i 2 .2 ;2 -
lvrx + \ry * V., | (3.11)

The negative sign comes from the sign of V. as shown in

Figure 2.2 and Equation (2.6).

D. PROJECTED-ZERO-CONTROL MISS (PZC MISS) DISTANCE

The Projected-Zero-Control miss distance (PZC-miss) is
defined as the miss distance which would occur if there
were no further control input after time T

In this work the state vectors are defined as the

following state variables

;‘:(RX’RY’RZ,\",V,V y 8., A, 4 T

rXx ry rz tx ty tz)

Where Rr is the relative missile distance to target
Vr is the relative missile velocity to target

a is the target acceleration

t
A model for target acceleration has been assumed. This

is given as follows:

ol T|

at(T) = a,qe ) 0 (3.12)

v
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Where a 1is the-intial target acceleration and =« 1s the

. reciprocal of the acceleration time constant. The initial
target acceleration, 4g's, will be assumed for each
scenario, and o = 1/20 for evasive maneuver as indicated
in Reference 10 will be chosen. These values will be used
in the simulation of the optimal controller.

With the assumption that a state estimator is available

to provide estimates of the state vector at current time (t),
the values of the state variables for no control inputs at

future time, can be obtained easily using the integration,

i.e.,
Vo(t) =V (t0) +I:0 a, (t)dt
- r
R(t) =

R(t0) + V_(t)d
ItO rt e

The results of these integrations are

] . . . -a(t - t0) <
V() = V_(t0) + 1/a (1 - e « ya, (t0)  (5.13)

R(t) = R(t0) + (t - tO)*Vr(to)
(3.14)

¢ [1/af(a(t - t0) - 1+ e 0(E 7 Ty g (€0)

Where t0 and t denote current time and future time. It

should be noticed that above integration is based on the
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.
assumption of a single physical dimension. If this assump-
. tion is to be applied to three-dimensional problem, it must fﬂ;

-

be concluded that there are no coupling among the X, Y, Z

X dimension. Let T_ =1t - t , then the components of the
. o

k PZC-miss in inertial axes at current time (t0) can be

expressed as

\ ’
M RX TX RS-
My )i R, 110 Vez | 1O o
]
- 0 - j
£y tx —
N ECIE S B (3.15) -
L X 4z | TO éi?
- - '-‘
2
2VY%kak .
| (1/2)*¢ Teo | 0
—
Where f’( = f)’ =f, = l/az[aTgo -1+ e-aTgo] and the last

term accounts for the free fall effect of gravity in the

vertical axis.

The components of the PZC-miss in missile body axes for
control input calculation are obtained via the Euler trans-

formation matrix:
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bx X X
hS = . . \ = \ 3 )
My [o302, 1001 | M, (a1 ] N, (3.10)
Mb_ M M

Where it is assumed that the missile has exact knowledge of
its orientation angles wv , av , » , from the accurate
inertial measurement units.

The values of optimal control vectors (ac and PC) )
then, are calculated from time to go (Tgo) , PZC-miss in
body axes and weighting matrix components (Bl and B2) which
may be determined according to the desired miss distance and
intercepting time. 1In a later section, the weighting

matrix will be developed and the scenarios will be set up

for computer simulaticn.

E. SIMULATION RESULTS

The guidance law in this work was tested on a simple
six-degree-of-freedom simulation using only plausible
numbers without reference to any actual missile or design.

Before the computer simulations, the weighting matrix
of the performance index selected in Reference 8 will be
calculated using the initial state, X(0) , the missile
operating time imposed, T (5 sec) and the constraint input
vectors. It is assumed that the missile has a velocity

advantage of two over that of the target, a zero- and 0.5
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Second-timeAlég auto pilots for pitch with limits of -3g's,
+20g's and for roll rate with limits of +6.28 rad/sec.

The allowable miss distance which is usually determined
by sizing of the warhead was chosen as 5 meters. Which
makes the first term of the performance index Equation
(3.3) equal to 12.5 meters. The acceleration term and the
roll-rate term in the performance index are set equal to

this respectively (one-half of square mean miss distance),

then
By Ty 2 2
= (a. - ag)’ dt = 12.5m (3.16)
0
T,
B, i - 2
< (P.°) dt = 12.5m (3.17)

0

The nominal time of flight for the terminal phase is set
equal to 5 seconds. The components of the weighting

matrix B were based on the following assumptions. It is
assumed for (4g's)zas a mean-square value of (ac - ad) and
(2 rad/sec)2 as a mean-square roll rate to be acceptable.

Then the components of weighting matrix are:

B, = 0.003254 secd

B2 = 1.25 mzsec
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The commands a and P are computed every 0.05 sec

and are frozen when the Time-To-Go falls below this interval.

In order to simulate the optimal controller appropriate
scenarios were developed below with restriction that the
Time-To-Go was 5 sec and the speed of missile is two times
faster than that of target. Three scenarios; tail-chase,
head-on, side-approach engagements, were chosen as possible
cases in this work.

In case 1, tail-chase engagement, the target flies 100m
above the missile and 2500m uprange with a horizontal east-
ward acceleration of 4g's. Figure 3.3 shows the case 2.

In case 3, side-approach engagement, the target flies 400m
above the missile and 1900m uprange with a horizontal north-
ward acceleration of 4g's at t = 0 as shown in Figure 3.4.
For simplicity, when the scenarios were set up, 1000m/s was
taken as a missile speed, 500m/s as a target speed in case

1 and case 2, 600m/s as a missile speed, 300m/s as a target
speed in case 3, and 4g's as a target acceleration for all
three cases. When simulation was executing, this first
simulation assumed perfect state feedback without the use of
an optimal estimator.

The simulation results are shown in Figure 3.5 through
Figure 3.10. At first, the optimal controller with no time
lag was tested for three scenarios, as shown in Figures 3.5
and 3.6. For scenario 1, the normal acceleration command

in initial phase is very large, then decreases to zero at
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FIGURE 3.2 SCENARIO-1 TAIL-CHASE ENGAGEMENT. o
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FIGURE 3.3

SCENARIO-2 HEAD-ON

ENGAGEMENT.
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XT=1900m T

V., =600m/sec /

FIGURE 3.4

SCENARIO-3 SIDE-APPROACH ENGAGEMENT.
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at the final time. For scenario 2, the acceleration is zzvo
in the initial phase, then increases and converges to zero
finally. For scenarioc 3, the acceleration starts frcm :zero,
but, increases rapidly up to the maximum acceleration then
freezes for seconds before decreasing. The acceleration
does not convefges to zero at the final time. Conparing
these results with the variation of the roll rate command

in Figure 3.6, the opposite trends are observed in the
results of scenarios 1 and 2, i.e., if an acceleration
command in the initial phase is large, a roll rate command
is small. The acceleration command in Equation (3.5) is a
linear function of PZC-miss in of z-direction of the missile
coordinate system. For scenario 1, PAC-miss in the
z-direction is relatively large, this causes a large accel-
eration command and a small roll rate command in initial
phase. For scenario 2, the relative magnitude of the PIZIC-
miss in the z-direction is small. This cause a large roll
rate command in the intial phase. For scenario 3, the
PZC-miss in y-direction is of the same magnitude as the
relative distance as the Time-To-Go decreases. This means
that a larger acceleration command than the maximum value
allcwvable in the missile body coordinate system is required
at some of instance time during the missile flying. Thus
the acceleration does not converge to zero at the final time.
In the derivation of the equations for control commands, a

small angle approximation was assumed. However, in the
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scenario 3 this assumption is questionable. The rvoll rate

command computed as shown in Figure 3.6 shows a sine wave
characteristics which is possibly due to overcorrection.

The simulation results for a 0.5 second time lage are
shown in Figure 3.8 and Figure 3.9. The time lag causes
much larger acceleration control commands. This includes
overcorrections, so that the control commands do not
converge in the final phase. The other characteristics
follow the explanations given in the analysis of the cases
with no time lag.

For all three scenarios the miss distances were obtained
in the simulation of both cases, no- and 0.5 second-time
lag. The miss distances are below 0.5m for all three
scenarios in the case of no-lag. In the no lag case the
control laws gave excellent results. In the lag case, the
niss distances are 5.9m for tail-chase engagement, 0.8m for
head-on engagement, and 32.9m for side-approach engagement.
The miss distance of the side-approach engagement with a
different maximum acceleration limit fo 23g's results in a
miss distance of less than 5m. This higher maximum acceler-
ation limit will be used in the scenario 3 during the simula-
tions for testing the performances of whole control system
in Chapter 5.

The previous results are summarized as follows: (1) the
tracking of a target is very dependent of the missile and

target geometry, (2) the capabilities of the missile
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(maximum acceleartion and maximum roll rate limits and time
constant) in maneuvering against the target is very important
factors, (3) higher maximum accelerations are required in
any side approach engagement, and (4) the assumption of
small A¢ in the optimal control law is a limitation in the
general case. Nevertheless, the control laws developed

from the optimal control theory for both the no lag and the
0.5 second-time lag cases yielded successful results for

the specified scenarios. Since the optimal controller with
0.5 second-time lage auto pilots resulted in a miss distance

of approximately 5m with complete state variables feedback,

it is expected that the inclusion of an optimal estimator for

these particular scenarios will results in still larger miss

distances.
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IV. OPTIMAL ESTIMATOR

A. DESCRIPTION

Without full state variable feedback it is necessary to
estimate the state variables. This chapter describes the
Kalman filters used in the state estimation. These filters
were designed for respectively: (a) two measured states,
(b) four measured states, and (c) six measured states.

All measurements have noise superimposed on them. It is
assumed that the nature of the noise source is known
completely.

The Kalman filter is the optimal estimator of the
states. Since the measurements are non-linear, it was
necessary to use the extended Kalman filter theory. A
first order extended filter was assumed in this work. 1In
developing the filter algorithm, the non-linear measurement
equation is linearized about the most recent state estimate
and then the Kalman filter algorithm is applied. This is a
extended Kalman filter algorithm. The results of the
extended Kalman filter will yield suboptimal state estima-
tion,

In practice, the missile will have sensors of various
types that provide inputs which are related in some fashion
to the states to be estimated. The main emphasis in the

present work will be on active seeker which is assumed to
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provide the optimal estimator with measurements of line-of-
sight angles for the case of the missile having two wmeasure-
ment sensors. For the case of four measurements one has two
of line-of-sight angles, range and time rate change of
range. For the case of six-measurements one has two of
line-of-sight angles, two of time rate change of the line-
of-sight angles, range and its time rate change. When the
measurement equations and the Jacobean matrix are developed
the six-measurement case will be derived since the other
cases have the same kind but less number of measurement
Sensors.

We will first consider the state equations and then the
measurement equations. This will be followed by a discus-
sion of the extended Kalman filter. Measurement error
effects on the initialization of the Kalman filter will be
analyzed. Finally, the estimator for the measurement cases
will be simulated in order to test the effects of the imple-
mentation of the different measurment vectors on the

extended Kalman filter.

B. STATE EQUATIONS

The state vector is limited for convenience to the

following state variables:
§=(RX,R)’,R s V

(4.1)
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Where Xl = R‘, X, = Rv’ XS = R, are the components of
relative position, k4 = xrx’ Rs = \ry’ XG = \r: the conm-
ponents of relative velocity, and k7 = Ay RS = aty,

Xg = a,, the components of target acceleration.

In order to develop the state equations, dynamic equa-
tions of target motion are needed. The target model
selected for tracking applications must be sufficiently
simple to permit ready implementation in weapons system for
which computation time is at a premium yet sufficiently
sophisticated to provide satisfactory tracking accuracy.
To meet these requirements, the model described by Singer
[Ref. 10] will be used in this work. The model will be
presented for a single spatial dimension in order to
enable accurate tracking performance estimates to be made
for a variety of sensor measurement. If the targets under
consideration normally move at constant velocity, the
accelerations due to turns or evasive maneuvers may be
viewed as perturbations upon the constant velocity trajec-
tory. The target acceleration a(t) therefore will be
termed the target maneuver variable, in a single physical
dimension. The target maneuver capability can be satis-
factorily specified by two quantities: the variance or
magnitude of the target maneuver and the time constant,
or duration, of the target maneuver. Hence the target

acceleration, namely, the target maneuver is correlated
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in time. A typical representative model of the target
acceleration as a correlation function, can be expressecd

as follows:

at(T) = E[at(t)at(t + 1)] = GmZe-uStl a >0 (4.2)

Where the cmz is the variance of the target acceleration

and a is the reciprocal of the maneuver time constant.
The variance omz of the model will be approximated using
the following formula which represents the acceleration

probability density suggested by Singer [Ref. 10} :

2 .
oz=i’“—5‘5-[1+4p - P,] (4.3)
m 3 max 0 T
where aax is a maximum acceleration rate, Pmax is the
probability of maneuvering at a_ . » and P, is the

probability of no target maneuvering. And as mention in
previous chapter, a« = 1/20 for an evasive maneuver will
be used in this work.

The above process can be modeled as the output of a low
pass filter driven by white noise and it can be described

by the equation

a, = - a,_ + W (4.4)
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2 . . , . .
where G (t) , the correlation function of the white necise

input satisfies
g} -
e = 2 s -
o (1) 2ag §(1) (4.5)
The acceleration model above will be applied to each

X, Y, Z dimension with no cross coupling, the system state

equations can be written then as:

‘)£=FJ_(+3+W

R, 0 00 10 0 0 0 OR, 0 0
%y 00000 10 0 0 O||R 0 0
R, 00000 01 0 0 O|IR 0 0
Vool [0 00 0 0 0 1 0 offv “a 0
er <j0 00 0 0 0 0 1 ooflv |+ |a,l+ |0
vl o0 000 00 0 1{ph_ a, 0
a, | lo o 0 0 0 o0 L0 olla 0 W
Byl [0 00 00 0 ol 0 W,
a,| 10 0000 00 0 |la, W,

(4.7)

The Equation (4.7) is a linear state equation with the
assumption that the forcing function a vector, i.e., missile
acceleration, can be precisely measured and also resolved

into X, Y, Z components in the inertial frame.
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Many sensors have a constant data rate, samplins the
data every T seccnds. If the above system equation i3
represented in discrete equations. The appropriate svsotem

equations of motion may be expressed by
X(K + 1) = o(T)X(K) + B(K) + U(K) (4.8)

where 4$(T) 1is the target state transition matrix, B(K)
the deterministic forcing input vector whicﬁ is composed of
first and second integration and U(K) the inhomogenecous
driving input due to white noise. Since it is assumed that
the missile acceleration is a known deterministic forcing
function, the system equation of motion can be obtained by
direct integration in each single dimension with E!Ww(t)|=0.

The desired integration in discrete form yields

R(t0+T) 1T 1/0%(-1 + aT + ¢ *Ty| |[R(t0)
V_(t0+T) | = fo 1 1/a(1-¢ Ty v_(t0)
-aT
aT(t0+T) 00 e at(tO)
'I t0+T
(03, (D)dtde
t0+T
+ |- a_ (t)dt
J;o m

X(K+1) =0 (t, o) X(K) + a (K) (4-9)
Where K + 1 = (K+ 1)T =1t + T, K =KT = t0
59




Next, if the driving input U(t) vector is considered,
i : this input is not a sampled version of the continuous tine
white noise input W(t) . Since W(t) 1is white noise,
U(k) also should be a discrete time white noise sequence,
that is, E[U(K)U(K+i)] = 0 for i # 0 . Then as shown
in Reference 10, U and W are related by

(K+1)

L(k) -fKT sIIK + 1t - 1] wW(t)de (4.10)

Where U(K) 1is a white noise sequence with covariance

ﬁ matrix

E(U(K)U(K)T] = Q (4.11)

Following the above derivation, it can be easily
expanded to the case of three independent dimensions in X ,

. 7 = = = = = =
Y, Z. For oy ay a, a , and Oy oy o, o]

since the model of target acceleration is for one dimension,

the transition matrix is

B :
1 TI flI
¢ =10 I fZI (4.12)
0 0 I
L .
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Where I and 0 are 3 by 3 identify and null matrices, and

2 -p
1/a(aT - 1 + ¢ T

)

oT

y
#

5 1/a(1 - e *%)

_ _-aT
f3 = e

The forcing acceleration vector .is

K+ DT
B - sl
1 KT ax () dtdt
(K + DT
B2 - IJKT amy (tr) drdt
(K + )T
83 - IIKT a ., () drdt
(X + 1T :
B = B - (4.13
] = 4 KT 3 % {(t) dr
(K + 1T
B5 - fKT amy (t) d=
(K + )T
B -7 a__ (1) d=
6 KT mz
B7 0
B8 0
B9 0
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The covariance matrix of white noise U(K) 1is

Q = Ql')I QZ')I QZSI (4.148)

| st Qs Qs3l

J
Where
Qyy = ©/ah L - e T 2t v (2/5)@D3 - 2(am)?
- 4aTe-aT]
Qp = 0f/a e T w1 - 26T L 2ame T L 20T + (wm)?)
Q5 = /e - e 2T L 2are T
Qy, = 2ty 1aeT -5 - e BT 4 gary
Q3 = (Uz/a)[e~2“T v 1 - 2¢7%Ty
Q33 = 02[1 - e'zaT]

C. MEASUREMENT EQUATION
In the case of the estimator with six-measurement sen-
sors the present study assumes that the active seekers of

missile give the measurements of the sightline angles




Ve ox o
P )

, the time rate change of the sight line angles

aR b ’L’R

9 , the reclative range R , and the time rate change

R’ ¥R
of the relative range R contaminated by the Gaussian white
noise. Then the equations of measurements in discrete time

form are
Z(K) = n(x,X) + V(K) (4.15)

where Z(K) 1is a sequence of measurement vector contaminated

by white noise V(K) and

elevation angle er
elevation angle rate 6,
azimuth angle v
h(x) = =
azimuth angle rate wr
range R
range rate R

The missile seekers actually measure the data about the
seeker axes. Thus, throughout this development the assump-
tion is made that the missile possesses an inertial measure-
ment unit that accurately specifies the missile's orienta-
tion in space so that a transformation from seeker to
inertial coordinates can be made.

Referring to Figures 2.2 and 2.3, the six-measurement

vectors can be written
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The measurement vecto

r can be expressed in terms of state

vector
X
-1 3 .
h L tan i
1 T L 2172 ,
(kl + kz ) .
2Nox, ¢ X ANGX 2 2)x.\
) Ny NgNy v N NN e T X TINSN
2 . 2 .2 . 2,3/2,, 2 L 2.1/2
(X7 % ”"3)3/ (Xq +kz)/
P
h(x) = h3 = tan -
“1
N -k1X2k4 + RIXZRS
4 £ N N 7 RS R,
(Xl +kz +k3 ()\l +)\2)
, 2 2 . 2.1/2
hS (kl + X2 + xs
N X1X4 + XZXS + X3k6
6 .2 , 2 . 2.,1/2
()\l +,\2 +)&3)
(4.16)

The measurement no

seeker can be written

E[V(KV(K)] = R =

ise covariance matrix for the active

032 o o 0 0 0
.2
0 o 0 0 0 o0
0 owz 0 0 0
) (4.17)
O o0 o 5% 0 o0
"
0 0 0 0 op2 0
,
0 0 0 0 0 R
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' Where the diagonal elements are the variances of the indi-
h vidual measured quantities.

L As shown in Equation (4.16), the measurement vectors are
s

the non-linear functions of state vectors. It is impractical
“i to implement in non-linear form because the computation of

gain K and error covariance matrix P in update process

in extended Kalman filter algorithm is not possible. To

simplify this computation, and to implement the extended
Kalman filter, the Jacobean or matrix of partial derivatives

H will be determined, i.e.,

1 (4.18) -

The Jacobean will be a 6 by 9 matrix because h 1is a vector
with six elements and X 1is a vector with nine elements.

Performing the operation, the components of the matrix H

are S
2

B = (-X X o D

gy - UEF /R

X £ 2 2)

o= X !

as - K 110

] =3 H =0 H =0 H = 0 =
Eie 47 uE 49
B o= (X D

e ( 1)/( C)

i o= (X D

e (x )7 C) -
H = (X D "
3 { 3)/( C)
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55 56 57 5y
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[(Do )T ‘r’.zx“J/(DJ )
2
[(:>a X ) - wzxz’J/(Do )
z 3
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1 ¢

X D
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D. THE EXTENDED KALMAN FILTER

Optimal estimators that minimize the estimation error,
can be divided into two processes, the one is the updating
process to estimate the state vector at the current time,
based upon all past measurements, the other is the extra-
polating process to estimate the state at some future time.
Optimal estimation procedure for linear state equations and
non-linear measurement in the form of discrete time will be
described referring to Reference 6. Figure 4.1, a timing
diagram shows the flow of the various quantities involved
in the discrete optimal filter equations.

The discrete system equation whose state at time kt is
denoted by simply X(K) , where U(K) 1is a zero mean,

white sequence of covariance Q(K) , is

X(K) = & X(K - 1), + B(K - 1) + U(K - 1) (4.21)

where ¢ is a transition matrix
E(UK)] = 0 (4.22)
E[L(D UG T = Qs (4.23)

The measurements are the non-linear function of the systemn
state variables, corrupted by uncorrelated white noise of

covariance R(K) . The measurement equation is written as
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I(K) = h (X,K) + V(K) (4.23)

where E[U(K)] = 0 {1.25]

EQV(D V()T = Ry, (4.26)

The initial conditions are

E[X(0)] = X(0)  EL(X(0) - X)) (x(0) - )7 = P, (4.27)
E(¥ V1) = 0 uncorrelated (4.28)

The Kalman filter algorithm is to minimize the estima-
. . . N\ .
tion error, i.e., €rror covariance. If 5 denotes an esti-
-~
mate of state vector, X , and X 1is the mean value of the

state vector, the error covariance matrix is defined as
U e
P=t[X-0&-%0T] (symmetric)  (4.29)

The development of the extended Kalman filter algorithm with
a few definitions is essentially more application of the
expectation operator E. We will consider the updating
process then the extrapolating process. The update equa-
tions are used to incorprate the latest measurement in the
estimate and in the covariance. After we obtain the updated
covariance matrix we will then consider the optimum choice
of Kalman gain and derive the equation for the esti-

mation of state. Let X(K-1)(-) denote an estimate of X
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H(K-1),R(K-1) H(K),R(K)

Ai ‘l

i(x-l)(-) i(x-l)(+) i(g)[.) X(K)(*)

$(K-2),Q(K-2 +(K-1),Q(X-1) +(K),Q(K)

—> C > —>

P(X-1)(-)] P(K-1)(#) P(K)(-) P(K) (+)
extrapolating updgting
process process
t(K-1) t (K)
measurement measurement
process process

FIGURE 4.1 DISCRETE EXTENDED KALMAN FILTER TIMING DIAGRAM.
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at time K-1 , given measurements up to and includinz tine
K-2 , P(K-1){-) <enote the error coevariance, K(K-1)
denote Kalman gain and H(k-1) denote the Jaccobean matrix
at time K-1 . Wé will seek an optimal observer in the
presence of the state excitation noise and in the presence

of the observation noise.

P(K-1) (+) E{[I - K(K-1)H(K-1) IX(K-1) [X(K-1) L(-) (1-K

(K-DHE-D) ) +vk-D Tk (x-1 7]
(4.30)

+

K(K-1) V(K-1) [X(K~1) (=) T (I-K(K-1)H(K-1) )

+

V(K-l)TK(K-l)T]}

Rearranging Equation (4.30) using the definitions
Equations (4.26) and (4.29) and the assumption that the
measurement errors are uncorrelated, then one has
P(K-1)(+) = [I-K(K-l)H(K-l)]P(K-l)(-)[I-K(K-I)H(K-I)T]

_ (4.31)
+ K(K-1)R(K-1)K(K-1)T

This equation updates the error covariance matrix.
Then we still need an optimal gain K. We will choose to
minimize the diagonal elements of the covariance matrix,

i.e.,

J(k-1) = E[Rx-1) () TRx-1) (9] = trace [P(K-1)($)]  (4.32)
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FIGURE 4.2 SYSTEM MODEL AND DISCRETE KALMAN FILTER.
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Introducing a bit of matrix calculus, one has

ERY: (4.

wl
(93]
——

a_ ce A3 AT
3;\ [trabe AB .\ ]

i

]
jany
~~
2

[
[

EKT%TTT [I-K(K-1)H(K-1)] (4.34)

Applying these formulas to Equation (4.31) and solving

for K(K-1) ,

K(K-1) - P(K-1)(-)H(K-1)T[H(K-1)P(K-1) (-)a(K-1) +Rr(Kk-1) ]}

(4.35)
This is the Kalman Gain Matrix.
Rearranging Equation (4.31)
P(K-1)(+) = [I-K(K-1)H(K-1)]JP(K-1)(-1) (4.36)

Then the update state estimate at time K-1 is equal to
the extrapolated state estimate at time K-2 plus a term

which weights the measurement residual via gain K(K-1)

R(K-1) (+) = K- (=) + KK-1)[2(K-1)-h(k-1) ;K (K-1) (-)) ]
(4.37)
We need to consider also the propagation of the estimate
§I+) between measurements and the propagation of the
covariance matrix P(K-1){(+) between measurements. Propa-

gation of the estimate is straight forward and involves only
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compute PK_1(+)7 compute I'ii-}
EQ(4-27) FQ(4-23)
Ny R AR sl
set X Reascnahlencss )
Checks r‘—"
H, = compute K )
Ry ™ EO(4-26)
Update
Estimate
() 4
hK
= compute X.(+) ; Reasor}ableness43
EQ Checks !
<“K-l set 7
i K
k!\(-)
= h (K) compute XK(-)
+ - EQ(4-24)
FIGURE 4.3 DISCRETE KALMAN FILTER INFORMATION FLOW DIAGRAM.
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the application of the state transition matrix and the

forcing terms.
A -~ i 3
X(K) (=) = »(K-DX(K-1) (+) + U(K-1) (4.38)
By the definition (4.29), solving for P(Kj(-)
P(K) (-) = #(K-1)P(K-1) (#1)3(X-1)T & Q(K-1)  (4.39)

Figure 4.2 illustrates the above developed equations in
block diagram form which contains a system model, measure-
ment process and the Kalman filter to be implemented, and
Figure 4.3 shows a simplified computer flow diagram of the
discrete Kalman filter.

Equations (4.35) through (4.39) constitute the recursive
formulas for implementing the extended Kalman filter
algorithm. The process is initializing by providing values
210)(-) and p(0)(-) . In order for the extended Kalman
filter to be simulated, the next section will describe the

initialization of the Kalman filter.

E. INITIALIZATION OF THE KALMAN FILTER

The one objective of this work is to test the perform-
ance of BTT missile control system having a Kalman filter as
an optimal estimator as a function of different measurement
vectors. All values for initialization of former worker in

this work (Ref. 14) will be used for computer simulation.
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1. Initializing the Error Covariance Matrix, P

Let Gp > Oy and 9 define the standard deviaticn
of relative position estimate, of relative velocity esti-
mate, and of target acceleration estimate. The initial
values of error covariance matrix p , will be chosen as

follows. The first six elements of the initial state

vector are determined by
/\
X(0) = X(0) + Y(0)

Where the measurement vector S; is the true measurement
vector X plus V caused by measurement uncertainties.
The expected mean square of initial covariance matrix
components. With the assumption that the initial
covariance matrix is diagonal with the diagonal elements
reflecting the uncertainties associated with the initial
state vector estimates, the components of the covariance

matrix are

E[Viz] - E[VZZ]

\
m
—
-

w
(3%}
L
i
Q

E[V,’] = E[VSZJ

n
m
~—
N

(o)
~o
)
]
Q

The last three elements of the state vector, acceleration

components, are set to zeros
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2. Initializing the Measurement Noise Variance !Matrix &

Measurement errors for the active seeker are

e

assumed to be due to thermal noise, gimbal angle pickoff
error, environmental noise, and glint. The values of one
sigma errors in each measurement will be used in present
study. Because in the case of angle measurement, the envi-
ronmental noise is proportional to the square of range to
target and glint errors the wander of the apparent target
centroid as seen by the seeker as varing inversely with
range to target. The errors caused by noise are generally
a highly complex function of the target geometry, target
radar cross section, radar receiver, signal-to-noise ratio
and etc. For simplicity, in present study, the constant one
sigma errors (average values) in each measured vector are
assumed to initialize the Kalman filter. Referring to
Reference 13, the one sigma values of the average errors
for measurement of angle, angle rate, range and range rate
of the present active seeker are tabulated below.

(1) angle measurement errors : 0.15 -0.6 deg

(2) angle rate measurement errors : 0.5 -2.0 deg/sec

(3) range measurement errors : 3 meters

(4) range rate measurement errors : 6 m/sec

Before the simulation runs is undertaken, it will be

briefly discussed the manner in which the Kalman filter on

board the missile is initialized at the start of the
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engagement based on sensor data from the launch aircrarec.
The launch aircraft's sensors are assumed capable of Jdetev-
mining, within some prescribed accuracy, the relative
position and relative velocity of the target with respect

to the missile at the instant of launch. This information
is sued to initialize the first six elements of the filter's
state vector. However, the launch aircraft i1s assumed to

be able to provide no information regarding target
acceleration. Thus the three elements of the initial state
vector are set to zero, finally, the complete list of

nominal parameters for initialization is provided in Table

4.1.

F. EVALUATION OF THE OPTIMAL ESTIMATOR PERFORMANCE

The performance of the state estimator with two-
measurement vectors (case 1), with four-measurement vectors
(case 2), and with six-measurement vectors (case 3), was
simulated to evaluate the effect of the possible implementa-
tion of the more measurement sensors on the bank-to-turn
missile for typical scenario (tail chase engagement case).
The error covariance and the Kalman gain components
selected, and the states estimated, were computed as shown
in Figure 4.4 through Figure 4.30. The control laws imple-
mented with the estimator also were tested to evaluate the
performance of the control system of the BTT missile as

shown in Figures 4.31 through 4.35.
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Figures 4.4 to 4.12 represent the variations of the

error covariances otf each state variable. TFigures {.}
through 4.7 show the three covariances for the relative
positions, i.e., pll s PZ2 , P33 . Only the covariance
of the two measurement case varies substantially. Thus
one would expect that the gain components Gll s G21 s 631
would show only variations in the two measurement case as
are shown in Figures 4.13 through 4.15. The trend noted in
the set of graphs (4.4, 4.5, 4.5) and in the corresponding
Kalman gains is also observed in the other covariance
components. Thus the covariance components for the velocity
(Figures 4.7, 4.8 and 4.9) should larger variation is
reflecting in the corresponding Kalman gains of 4-16, 4-17,
4-18. The covariances of the acceleration components show

a similar development but there appears to be less variation
in aty and a,. acceleration covariances. In the case of

a,. the variation of the Kalman gains are restricted to a

much narrower range. The error covariance and the Kalman
gain components in all three cases eventually converge to
very small values. Figure 4.22 through Figure 4.30 show the
results of the sfate estimations of the three estimators.
Figures 4.22, 4.23 and 4.24 show the variations of the

estimated relative position (Rx’ R, R:). Figures 4.25,

v

’

4.26 and 4.27, the variations of the estimated relative

v’ Vrz). Figures 4.28, 4.29 and 4.30 the

v

velocity [er, \Y
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variations of the estimated target acceleration (a*Y,
L
: Ao at”) . The trends of the curves representing theo
¥ —
estimated states are similar except for Figure 4.25 wiaich

shows a wide variation in the estimated er component of

the two measurement case from the true state values.

Generally, the estimated states of the estimator with

! two- and four-measurement are close to the true s

ct

ates,
in spite of the wide variation of error covariance conpo-

nents of two-measurement case. The estimator with six-

measurement vectors generates the estimated states which
show almost same characteristics as the estimator with
four-measurement vectors, but usually underestimated the
states in comparison with the generated states of the
estimator with four-measurement vectors. Figure 4.32 and
Figure 4.34 show the curves of the control commands com-
puted using the estimated states. The results of the six-
measurement case have a wholly different form from the
curves representing the computed control commands in the
other cases. The normal acceleration commands computed
using the estimted states with the six-measurement vectors
initially have smaller values, but finally reach maximum
value as shown in Figure 4.32. Also as shown in Figure
4,34, the roll rate commands run from the minimum limit to

the maximum limit. The large variations of the both control

commands of case 3 during a short time interval result in

Y

co
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the worst miss distance, 15.4m. The control commands in the
other cases behave almost like characteristics representing
that the control commands are increasing smoothly from the
zero to its maximum control command, after two or three
seconds then slowly decreasing to converging values. The
relatively small variations of the both control commands
during a short time interval comparing with the control
commands of case 3 result in 9.7, miss distance in case 1
and 8.7m, miss distance in case 2. From above results, the
estimator with four-measurement vectors gives the best
result, the estimator with six-measurement vectors the
worst result and the estimator with two-measurement vectors
almost same result as the of four-measurement case comparing
with the result of the estimator with six-measurement vectors.
In original measurement equation, for case 1, the
missile has two-measurement vectors which give the informa-
tion about the relative angles, eR and wR , was assumed.
These two-measurement vectors are non-linear functions of
three relative distance components, Xl’ XZ’ X3 . For case 2,
the missile has four-measurement vectors which give the
information about above two angles plus relative range and
time rate change of relative range which are also non-linear
functions of the components of six state vectors, Xl’ XZ’

For case 3, eventhough the missile

XS, X4, XS and X6 .

has six-measurement sensors are assumed, the measured
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vectors using the six-measurement sensors contain only =i

state vectors which are exactly same kinds and numbers 2s
the measurable state vectors using the four measuremenc
sensors in case 2. As the angle rates, éR , ;R , are
included to the estimator as the measurement vectors in
case 3, the both angle rates are non-linear functions of
only six-state vectors, Xl, Xz, XS’ X4, Xs and X6

The results of the estimator with four-measurement vectors
and with six-measurement vectors show the almost same
variations of the error covariance and the Kalman gain com-
ponents of the six measurement case as of the four measure-
ment case as shown in Figures 4.4 through 4.21.

The Kalman filter in this work is a first order filter.
Thus the components of the Jacobean matrix contain only the
first order term, i.e., all higher order terms are neglected.
As the order of the system is increased one would expect a
more complex system to response differently. The above
reasons affect to the underestimation of the states of six
measurement case as shown in Figures 4.22 through 4.30.
From the above considerations it can be concluded that as
the increased number of measurement vectors is implemented
to the extended Kalman filter algorithm, the result of the

system may not be enhanced up to the expected degree due to

the increased complexity of the system. The system with the
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V. PERVORMANCE EVALUATION OF TuHE CCNTROL

This section will dis

(@]

uss the performance of tho cantrrol
svstem implemented in a bank-to-turn missile for each scen-
ario. The maximum normal acceleration, the maximum roll
rate and the time constant are the key parameters wihich

reflect the missile capabilitics, the ncises to measured

e}

vectors are the parameters of the environmental effect, and

auxiliary variables of some importance are then total engage-

ment time and missile velocity. The mean miss distance
determined from the 50 Monti Carlo runs was used as a
performance standard for the estimators of two- (case 1),
four- (case 2) and six-measurement vectors (case 3) on each
scenario. The simulation results are shown in Figures 5.1

through 5.189. The sensitivities to variations of the para-

meters will be discussed below. Since the simulation results

show essentially the same characteristics for the tail-chase
engagernent (scenario 1) and for the head-on engagement
(scenario 2). The performance on these two scenarios will
be discussed together for each parameter. The side-
approach engagement (scenario 3) will be discussed sepa-
rately.

Figures 5.1 and 5.2 show the miss distance variation as
a function of missile maximum normal acceleration. For

scenario 1, case 1 shows a mean miss distance of 9.8m at
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above 13¢'s, case 2.9m at above 15z's and case 3, 13.:x
above 15g¢'s. Each casc also shows that as the maximun 1imit
of the normal acceleration decreases, the mean nmiss distance
in case 1 is less scnsitive than in the other two cases.

For scenario 2, the result of case 1 shows the minimum mean

miss distance is 10m and the result of case 2 is 17m at

Ve o
-m at

(92}

a = 21g's respectively, the result of case 3 is
a = 17g's. The trends of the curves show that the mean
niss distances in case 1 and case 2 vary in same manner,
which rises sharply as the maximum acceleration decreases.

On the other hand, the mean miss distances in case 3, vary
smoothly above ap.y = 13¢'s . One may conclude from the
analysis as follows: for scenario 1, the mean miss distance
can be decreased since more information on the state vectors
can be obtained from the increased measurement vectors in
estimator for low maximum acceleration. In order to get the
mean miss distance below 20m for all three cases, one needs
aax of over_llg's. For scenario 2, as the measurement state
vectors are increased in estimator, the mean miss distance
does not decrease, possibly due to the effect of neglecting
the higher order terms in the extended filter. As the mag-
nitude of the values of the missile and target geometry

components becomes larger, the effect of the linearization

becomes more pronounced. a.x = over 19¢'s is required to
1
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to obtain the mean miss distance below 15m in case 1 20l
case 2. In case 35, the mean miss distance deces not
below 2Um.

Figures 5.3 and 5.4 the variations of the mean niss
distances as missile maximum roll rate viaries. In scenario

1, for case 1 and case 2, a mean miss distance of below 10m

177

can be obtained when pmax is greater than 3 rad/sec. TFor
case 3, one has a mean miss distance of below 16m with

pmax greater than 6 rad/sec. The trend of the mean miss
distances is almost constant over certain range in values
of pmax . The variation of the mean miss distance below
this range is a tenth of the magnitude conmparing with the
variation of the mean miss distances as a function of
maximum acceleration. It is concluded that for scenario 1,
the mean miss distance in case 1 and case 2 is not effected
by the roll rate if the roll rate is above 3 rad/sec. In
case 3, higher roll rate limit can reduce the mean miss
distance. For scenario 2, the mean miss distances of case
1 and case 2 are like the trends for scenario 1. However,
the mean miss distance of case 3 has a minimum of 26m at
Pmax = 4 rad/sec, then increases up to 36m then decreases
slightly. This trend may be due to the effect of the roll
rate lag, which is caused by the increased maximum roll
rate and by the underestimations of the state variables in

case 3. The other characteristics, i.e., the mean miss

distance decreases with increased maximum roll rate limit
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and for scenario 1, casc 2 shows less near miss distanso
than case 2, hut for scenario 2, the cprosite trond shivs,
¢an be explained with the same reasons as tihosc ol tioe irv
analsvis.

The variation of the mean miss distances with the tine

cosntant as a parameter is shown in Figures 5.5 and 5.0.

o)

—

For both scenarios, one has a flat plateau for

the time constant and a sharp rise with increasing calucs of

the time constant, i.e., for scenario 1, Figure 5.5 shows
the curves of the mean niss distances slightly increase up

to the time constant of 0.9 second, for scenario 2, the

curves up to 0.5 second are plateau, then for both scenarics

the curves rise sharply. For scenario 1, the mean niss

distance of case 2 is less than that of cuase 1 up to 0.5
I

second time lag, but above 0.5 second lag, the results show

an opposite trend. Also over this time lag, the curves of

case 3 for both scenarios are not sensitive to the variation

of parameter up to the time constant of 0.7 second for

scenario 1, 0.9 second for scenario 2. The general trend of

the curves, i.e., as the time constant becomes longer, the

miss distance becomes larger, is duec to slow system response.

From the figures showing the results, the time lag of less
than 0.5 second is necessary to obtain tho mean miss

distance of the required order of magnitude.

Figures 5.7 and 5.8 show the variations of the mean miss

distances as a function of one sigma angle noise. For

ow values c¢f
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sceiarie 1, as sh

distance 1is obtained rfor the siX measurement Case @70 the
miss distance boing the snallest for the two measureasar
case. Above zbhout the anzle ervor of .3 dezree the uiss
tfunction of tae angle ¢rrer. For
small errer values, i.e., less than 0.2 degrec, the curves
seem to be approaching each otner. For the scenario 2, the
miss distance is a strong function of the angle error. For

the two scenarios (Figure 5.7 and 5.8), the two measurement

ca

172

e has similar results up to an error of 0.4 degree. All

cases show a stron ise in the miss distance with increas-

qq
o]

r

ing ervor. The four measurement case seems pasticularly
sensitive.

The variation of the miss distances as a function of
missile velocity are shown in Figures 5.9 and 5.10. During
simulation the initial stand off distance was increased to
kKeep the engagement time the same. One important aspect of
Figure 5.9 is that represents an opposite trend of the
vatiations in the mean miss distance to the general trend
of the variation in the mean miss distance. Under the

missile velocity of 700m/s, the mean miss distance is less

than 10m for case 3, from 15m to 12.35m for case 2, from 15.7

to 14.5m for case 1. However, the curves for scenario 2
siiow the usual trend, i.e., the mean miss distance cof case
is the smallest and that of case 3 is the largest among the

mean miss distances of all three cases at a value of the
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given parameter. For hoth scenarvios, the geaeral o

the curves slowly iIncreases as the missile veloolic
increases, except for onc curve ot case 1 LToma RIS R
rized the foregoing considerations as follows veoThe
values of the missile and target geometry companents hecoone

smaller, i.e., velatively less erflect of neglecting the
higher order terms in the first order filter and loss
contamination of the measured vectors to noises, the mean
miss distance can be enhanced with the estimator or the six-
measurement vectors. As the estimator algorithm becones
simple, the trend of the mecan miss distances is less sensi-
tive to the target gcometry.

Figures 5.11 and 5.12 represent the effect on the mean
miss distance cof the total engagement time. For sinmulation
the initial stand off distance was increased to keep the
constant missile velocity. The general behavior of the miss
distances of all three cases slowly decrease as the engage-

ment time increases. For case 1, the mean miss distance

slowly decreases or is almost constant at below 10m. In the

other two cases, thcre is more variation in the miss distance,

but the general trend is still downward with increasing time
to go. Note that as time tc go increcases for a given T,

one has more cCharacteristic time interval available reflected
in Tgo/r . The mean miss distance therefore should be less

as the total engagement time increases. This fact is veri-

fied from both figurecs.
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Ficures 5.15 tnrough 3.18 shew the variations o, .2 ——

mean miss dizstances of all three ca

'

232 For side-anocnnon

envagement {scenario 3) as a function of each parancior.

The large miss distances resulting from this, scenavis 5

motivated its separate consideration. CGeneral trends of the

curves are similar to the cther scenarios but with higner

miss distance. This scenario is a strong test of the T
system. In this scenario, the control laws are subject to %f“
the error due to the limitation of the small anzle assunp- f»?
tion and the higher maximum acceleration capability is ;::
required due to the large variation of the PIC-miss in &f{
Y- and Z-direction. Thus there are some unexpected trends. :fé
Figure 5.13 shows the variation of the mean miss :::

. . L.
distances for each case as the apay iDCTeEases. Although :

the missile velocity is less than that of scenarios 1 and 2,

the maximum allowable acceleration is increased. As shown

in figure, the mean miss distance for case 1 is 1lm,

for case 2 is 10m, for case 3 is 13.5m only at

n
t
w

4]

w

a
nax

The figure shows the miss distance variations in this

scenario are more sensitive to the qnax than in the other -
i - .

two scenarios. The mean miss distance of below 40m can be

ined a = oV 5! i.e., more a is
obtained at aax over 19¢g's, i.e., more nax y
. . . . (-
required than in scenarios 1 and 2. This trend of the mean .
miss distances can be explained with the larger variation of
138




. '

@ state vector in Y-direction which can cause tho ool

angie  1i3)  in fontrel coemmand equations.,

As shown in Figure 5.14, the variations or fho misz
distances of case 1 and 2 as a function of p are aimest
constant above Pmax = 4 rad/sec. That of case 3, however,

hen

=2
1}

ct

6 rad/sec,

o
U

coentinuously decreases up to nax

-

aimost constant. For scenario 3 one needs a maxinum roll
rate of about 5 or 6 rad/sec to have an effective BTT
nmissile, which is higher than in scenaries 1 and 2.
Figure 5.15 shows the variations of the mean miss distances
as a function of time constant. Up to the time constant of
0.7 second, the mean miss distance is less 20m. For all
three cases, comparing with the results for scenarios 1 and
2, the figure shows the curves of the mean miss distances
are less sensitive in this scenario. The target accelera-
tion vector lies in same direction as the missile velocity
as shown in Figure 3.4. Because the components of the
relative velocity are major components in computing the
control commands, the nore correct cecntrol commands may be
computed due to the small uncertainty in Mby and sz
components. This results in smooth variation cof the mean
miss distance curve. The trend of the miss distances us
the one sigma angle error increases, shows some different
characteristics from the trend for scenarios 1 and 2 in
Figure 5.16. The mean miss distances for all cases

increase continuously as the noisec input increcases up to the
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one sigma crror of ahout 0.4 deogree. Above the one siomu

-7
2}

errvor of 0.1!38 deuree , case 1 decreases t!
cas¢ I continues decrensing slowly, case 3 increooscs

continuously. The variations of the mcan miss distonces in
scenario 1 are almost plateau and in scenario 2 are zlmost

constant up to the one signa angle error of ahout 0.4 degree

i

then rises sharply as shown in Figures 5.7 and 5.8. Thi
reason can be deduced from the fact that as the one signa
angle error becomes large, the same magnitude of the two
state vectors in different direction, i.e., relative

distance in X-direction and relative in Y-direction, having

the same order of magnitude may be contaminated to the noise,

on the other hand, the other scenarios, only the components
in the X-direction being relatively large are contaminated
to the noise. From this fact, it can be concluded that the
missile in a side-engagement case is more sensitive to the
angle error than the other scenario.

Figure 5.17 shows the variations of the mean miss
distances as the missile velocity increases as a parameter
(i.e., holding the total engagement time of 5 seconds and
changing the relative éosition of the target). Up to the
missile velocity of 700m/s the curves of the mean niss

distances are plateau, after that velocity the curves riseg

sharply. Figure 5.8 shows the variations of the mean miss




distances as a function of the tota
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target and changing tae relative position of the tuvye
scenario).

Figure 5.13 shows the mean miss distance

wm

rise sharnly
over the engagement time of 6 seconds. This is somewhat
unexpected and may be an artifact of the implementation

tance as a

177

procedure. In other scenarios the mean miss di
function of the missile velocity increases slightly as the
missile velocity increases and that as a function of the
total engagement time decreases slowly with increased
engagzement time. From above analysis one has a conclusion
that the computed control commands should converge in the
final time as the computed commands of the two- four-
measurement case shown in Figure 3.32 and Figure 3.34 to
obtain the low mean miss distance. However, it can be
expected in this scenario that the computed control commands
do not converge possibly due to the violation of the small
angle assumption in deriving the equations of the control
commands (l.e., in this sccnario the sz component is
large in Equation (3.7), that causes the large mean miss
distances). However, in the case of relatively small magni-
tude of the missile and target geometry components, the
error caused by the violation of small angle assumption is
relatively small comparing with the errors caused by the

contaminated of the measured vectors to noises,
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lim for case 1, ldm for case 2, ldm for case 35 at the
missile velocity of 6J0m/s and the cngagement clime <
seconds, as shown in Figures 3.17 and 5.18.

The final Figure 5.19 shows the variations of the mean

miss distances for case 3 of all three scenariocs as a func-

o}

tion of the one sigma angle rate errcr. The result repre-
sents that the variations of the mean miss distances due to
increased input values of one sigma angle rate error are
almost constant for scenarios 1 and 2. TFor scenario 3, the
mean miss distance varies at constant rate of inclination.
This slope of the curve is relatively small comparing with
the slopes of the mean miss distance curves as the other
parameters change. From this analysis, it may be concluded

that the exposure of the measured vectors to the angle rate

error noise is neglegible in the case of prescnt study.
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CONCLUSIONS

A simple but effective biased guidance law anl thrae
P

o
L.
(=
[§1
o
ct
o)
«

extended Kalman filter equations have been derive
optimal control theory for a bank-to-turn missile with :zero-
lag and with 0.5 second time lag autopilots rfor pitch accel-
eration and roll state.

The equations of motion are linearized around the present
orientation of the missile with the assumption of small
future roll angles. During computer simulation, the optimal
control laws and estimators were tested separately invoking
the separation theorem. In the simulation of the system
three optimal estimators were used, i.e., estimator
with two measurement vectors, with four-measurement vectors
and with six-measurement vectors. The system has been eval-
uated for three scenarios, tail chase engagement, head on
engagement and side approach engagement.

From the analyses of the simulation results in Chapters
3, 4 and 5, it can be concluded as follows: The ccontrol law
was successfully simulated for a hypothetical bank-to-turn
missile with pitch acceleration and roll rate autopiiot
within the imposed limits on three scenarios. Miss distances
with zero-lag were negligible for all three scenarios

(below 0.5m). For the time lag case one had miss distance

of 5.9m for scenario 1, 0.8m for scenario 2 and 32.9m, with C




~J

0

0.5 second lag and with & oax = 3 2

va
w1

By inposing o
higher maximum g of 23 on the scenario 3, the miss
distance was reduced to below 5m miss distance. <One woull
expect a high ¢ requirement for a side engagenont situa-
tion as in the case of scenario 3. It is evident that the
missile's tracking ability against the target is very
sensitive to the missile and target geometry, the missile's
manuevering capability is also a very important factor.
Optimal control laws applied to the side approach engage-
ment place a severe strain on the system from the viewpoint
of the small angle approximation. Increasing the number of
measurements did not result in increased performance in the
sense of smaller miss distances for the missile except in
isolated cases. This may be due to the increased com-
plexity of the system as the number of measurements was
augmented. Further, in this study only first order extended
filters were implemented. It is possible that better
performance could be obtained at the expernse of increased
computational load, by using a second order extended Kalman

filter.
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APPENDIX A:  PROGRAM LISTING

——

This appendix provides listing of the computer progranm
used in the present study. Only one program for the six
measurement case is provided. Except for a few differences
in the subroutine filter the programs for the two other

cases are identical to the prcgram included here.
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